

Documentation for Starfish

Starfish is a Python library for automatically creating synthetic, labeled image data using Blender.

This library it extends Blender’s powerful Python scripting ability, providing utilities that make it easy to generate
long sequences of synthetic images with intuitive parameters. It was designed for people who, like me, know Python
much better than they know Blender.

These sequences can be smoothly interpolated from waypoint to waypoint, much like a traditional keyframe-based
animation. They can also be exhaustive or random, containing images with various object poses, backgrounds, and lighting
conditions. The intended use for these sequences is the generation of training and evaluation data for machine learning
tasks where annotated real data may be difficult to obtain.

Contents

	Requirements

	Installation

	Quickstart

	Recommended Reading

	Running Scripts in Blender

	Generating Images

	Example Script

Requirements

Though Starfish has only been tested with Blender 2.82, it should work with any version 2.8+. Please open an issue
on GitHub [https://github.com/autognc/starfish] if it doesn’t.

Installation

	Identify the location of your Blender scripts directory. This can be done by opening Blender, clicking on the
‘Scripting’ tab, and entering bpy.utils.script_path_user() in the Python console at the bottom. Generally, on
Linux, the default location is ~/.config/blender/[VERSION]/scripts. From now on, this path will be referred to as
[SCRIPTS_DIR].

	Create the addon modules directory, if it does not exist already: mkdir -p [SCRIPTS_DIR]/addons/modules

	Install the library to Blender: pip install git+https://github.com/autognc/starfish --no-deps --target [SCRIPTS_DIR]/addons/modules.
Starfish does not require any additional packages besides what is already bundled
with Blender, which is why --no-deps can be used.

Starfish can also be pip-installed normally without Blender for testing purposes or for independent usage of certain
modules.

Quickstart

Recommended Reading

To use Starfish, you’re probably going to have to interact with Blender using the Python API [https://docs.blender.org/api/current/]. This library also makes heavy use of mathutils [https://docs.blender.org/api/current/mathutils.html], which is an independent math library that comes bundled with
Blender.

Running Scripts in Blender

The easiest way to experiment with the library is by opening Blender, navigating to the Scripting tab, and hitting the
plus button to create a new script. You can then import starfish, write some code, and hit Alt+P to see what it does.

Once you’re ready to execute a more long-running script, you can write it outside Blender and then execute it using
blender file.blend --background --python script.py (or blender file.blend -b -P script.py for short).

Generating Images

Frames

At the core of Starfish is the Frame class, which represents a single image of a single object. A frame is defined by 6 parameters:

frame = starfish.Frame(
 position=(0, 0, 0),
 distance=10,
 pose=mathutils.Euler([0, math.pi, 0]),
 lighting=mathutils.Euler([0, 0, 0]),
 offset=(0.3, 0.7),
 background=mathutils.Euler([math.pi / 2, 0, 0])
)

See the starfish.Frame documentation for more details about what each parameter means. Once you have a frame object, you use it to
‘set up’ your scene:

frame.setup(
 bpy.data.scenes['MyScene'],
 bpy.data.objects['MyObject'],
 bpy.data.objects['Main_Camera'],
 bpy.data.objects['The_Sun']
)

This moves all the objects so that the image that the camera sees matches up with the parameters in the frame object. At
this point, you can render the frame using bpy.ops.render.render [https://docs.blender.org/api/2.82/bpy.ops.render.html#bpy.ops.render.render]. You can also dump metadata about a frame into JSON
format using the Frame.dumps method.

Sequences

Of course, Starfish wouldn’t be very useful without the ability to create multiple frames at once. The Sequence class is essentially just a list of frames, but with several classmethod constructors for
generating these sequences of frames in different ways. For example, Sequence.interpolated generates ‘animated’ sequences that smoothly interpolate between keyframes, and
Sequence.exhaustive generates long sequences that contain every possible combination of
the parameters given.

Once you’ve created a sequences, you can iterate through its frames like so:

seq = starfish.Sequence...

for frame in seq:
 frame.setup(...)
 bpy.ops.render.render()

The Sequence.bake method also provides an easy way to ‘preview’ sequences that you’re working
on in Blender. See Sequence for more detail.

Utils

The utils module provides a few more functions that may be useful for core image generation, such as
random_rotations or uniform_sphere.

Annotation

Starfish also contains an annotation module that provides utility functions
related to annotating generated data.

	One common type of annotation generated for computer vision tasks is some sort of segmentation mask (e.g. using the
ID Mask Node [https://docs.blender.org/manual/en/latest/compositing/types/converter/id_mask.html]) where having perfectly
uniform colors is important. Unfortunately, I’ve often encountered an issue in Blender where the output colors differ
slightly: for example, instead of the background being solid rgb(0, 0, 0) black, it will actually be a random mix of
rgb(0, 0, 1), rgb(1, 1, 0), etc. The normalize_mask_colors
function can be used to clean up such images.

	Once a mask has been cleaned up, get_bounding_boxes_from_mask
and get_centroids_from_mask can be used to get the bounding boxes
and centroids of segmented areas, respectively.

	Another common type of annotation is keypoints: e.g. where particular 3D points on the object appear in the 2D image.
generate_keypoints can be used to automatically generate evenly distributed
3D keypoints from an object’s mesh; project_keypoints_onto_image
can then take these keypoints and map them to 2D image locations after rendering a particular frame.

Example Script

All together, here is what an image generation script might look like:

"""
IMPORTANT NOTE: This script is just for demonstrating the various capabilities of Starfish, and is not meant
to be run as-is. If you try to run this script without modifications, it will probably not work, unless you have
your Blend file set up with the exact same scenes, objects, and compositing nodes. Even then, it will immediately
start rendering several long sequences and writing files to disk, with the files from each sequence overwriting
the files from the previous one.
"""
import time
import bpy
import numpy as np
from mathutils import Euler
from starfish import Sequence
from starfish.utils import random_rotations
from starfish.annotation import normalize_mask_colors, get_centroids_from_mask, get_bounding_boxes_from_mask

create a standard sequence of random configurations...
seq1 = Sequence.standard(
 pose=random_rotations(100),
 lighting=random_rotations(100),
 background=random_rotations(100),
 distance=np.linspace(10, 50, num=100)
)
...or an exhaustive sequence of combinations...
seq2 = Sequence.exhaustive(
 distance=[10, 20, 30],
 offset=[(0.25, 0.25), (0.25, 0.75), (0.75, 0.25), (0.75, 0.75)],
 pose=[Euler((0, 0, 0)), Euler((np.pi, 0, 0))]
)
...or an interpolated sequence between keyframes...
seq3 = Sequence.interpolated(
 waypoints=Sequence.standard(distance=[10, 20], pose=[Euler((0, 0, 0)), Euler((0, np.pi, np.pi))]),
 counts=[100]
)

for seq in [seq1, seq2, seq3]:
 # render loop
 for i, frame in enumerate(seq):
 # non-starfish Blender stuff: e.g. setting file output paths
 bpy.data.scenes['Real'].node_tree.nodes['File Output'].file_slots[0].path = f'real_{i}.png'
 bpy.data.scenes['Mask'].node_tree.nodes['File Output'].file_slots[0].path = f'mask_{i}.png'

 # set up and render
 scene = bpy.data.scenes['Real']
 frame.setup(scene, bpy.data.objects['MyObject'],
 bpy.data.objects['MyCamera'], bpy.data.objects['TheSun'])
 bpy.ops.render.render(scene=scene)

 scene = bpy.data.scenes['Mask']
 frame.setup(scene, bpy.data.objects['MyObject'],
 bpy.data.objects['MyCamera'], bpy.data.objects['TheSun'])
 bpy.ops.render.render(scene=scene)

 # postprocessing
 label_map = {'object': (255, 255, 255), 'background': (0, 0, 0)}
 clean_mask = normalize_mask_colors(f'mask_{i}.png', label_map.values())
 del label_map['background']
 bboxes = get_bounding_boxes_from_mask(clean_mask, label_map)
 centroids = get_centroids_from_mask(clean_mask, label_map)

 # add some extra metadata
 frame.timestamp = int(time.time() * 1000)
 frame.sequence_name = '1000 random poses'
 frame.tags = ['front_view', 'left_view', 'right_view']
 frame.bboxes = bboxes
 frame.centroids = centroids

 # save metadata to JSON
 with open(f'meta_{i}.json', 'w') as f:
 f.write(frame.dumps())

API Documentation

	Core (Frame and Sequence)

	Utils

	Annotation

	Rotations

Core (Frame and Sequence)

	
class starfish.Frame(*, position=0, 0, 0, distance=100, pose=Quaternion(1.0, 0.0, 0.0, 0.0), lighting=Quaternion(1.0, 0.0, 0.0, 0.0), offset=0.5, 0.5, background=Quaternion(1.0, 0.0, 0.0, 0.0))

	Represents a single picture of an object with certain parameters.

There are 6 parameters that independently define a picture:

	Object position: the absolute 3D position of the object in the global coordinate system (i.e. where it is in
the scene).

	Camera distance: the distance of the camera from the object.

	Object pose: the pose of the object relative to the camera (i.e. how it will appear to be oriented in the
picture).

	Lighting: the angle from which the sun’s rays will hit the object in the picture (e.g. from above, from the
right, from behind the camera, etc.).

	Object offset: the 2D translational offset of the object from the center of the picture frame.

	Background/camera orientation: the orientation of the camera and object relative to the global coordinate
system. This affects only what part of the scene appears in the background directly behind the object.

A note on coordinate systems: the representations for pose and translation were carefully chosen
to match those of OpenCV rather than using Blender’s default coordinate system. This means that OpenCV camera
projection functions such as projectPoints and solvePnP should produce correct results when pose
and translation are treated as the rvec and tvec, respectively.

	
__init__(*, position=0, 0, 0, distance=100, pose=Quaternion(1.0, 0.0, 0.0, 0.0), lighting=Quaternion(1.0, 0.0, 0.0, 0.0), offset=0.5, 0.5, background=Quaternion(1.0, 0.0, 0.0, 0.0))

	Initializes a picture with all of the parameters it needs.

A type of “rotation” means a mathutils.Quaternion [https://docs.blender.org/api/2.82/mathutils.html#mathutils.Quaternion] object or any object with a to_quaternion() method (which
includes mathutils.Euler [https://docs.blender.org/api/2.82/mathutils.html#mathutils.Euler], mathutils.Matrix [https://docs.blender.org/api/2.82/mathutils.html#mathutils.Matrix], and starfish.rotations.Spherical).

	Parameters

	
	position – (seq, len 3): the (x, y, z) absolute position of the object in the scene’s global coordinate
system (default: (0, 0, 0))

	distance – (float or int): the distance of the camera from the object in blender units (default: 100)

	pose – (rotation): the orientation of the object relative to the camera’s coordinate system (default: the
identity quaternion (aka zero rotation), which corresponds to the camera looking directly in the
object’s +Z direction with the object’s +X direction pointing to the right and +Y pointing down)

	lighting – (rotation): the angle of the sun’s lighting relative to the camera’s coordinate system (
default: the identity quaternion (aka zero rotation), which corresponds to the light coming from directly
behind the camera)

	offset – (seq of float, len 2): the (vertical, horizontal) translational offset of the object from the
center of the picture frame. Expressed as a fraction of the distance from edge to edge: e.g., for horizontal
offset, 0.0 is the left edge, 0.5 is the center, and 1.0 is the right edge. Same for vertical,
but 0.0 is the top edge and 1.0 is the bottom. (default: (0.5, 0.5))

	background – (rotation): Imagine a ray starting at the camera and passing through the object. This
parameter determines the orientation of this ray in the global coordinate system. For example, if you have a
world background image that encircles your entire scene, two degrees of freedom of this parameter will
determine the point in the background image that will appear directly behind the object,
and the third degree of freedom will determine the rotation of this background image (i.e. which way is
‘up’). (default: the identity quaternion (aka zero rotation), which corresponds to the
camera->object ray pointing directly in the -Z direction with the +X direction pointing to the right and +Y
pointing up)

	
dumps()

	Converts all of the frame’s attributes to a JSON object. By default, this will be the 6 frame parameters, plus
translation if setup has already been called. Any additional metadata can be added by just setting it as
an attribute: e.g. frame.sequence_name = '20k_square_earth_background'; metadata = frame.dumps()

	
setup(scene, obj, camera, sun)

	Sets up a camera, object, and sun into the picture-taking position. Also computes and stores the translation
vector of the object.

	Parameters

	
	scene – (BlendDataObject): the scene to use for aspect ratio calculations. Note that this should be the
scene that you intend to perform the final render in, not necessarily the one that your objects exist in. If
you render in a scene that has an output resolution with a different aspect ratio than the output
resolution of this scene, then the offset of the object may be incorrect.

	obj – (BlendDataObject): the object that will be the subject of the picture

	camera – (BlendDataObject): the camera to take the picture with

	sun – (BlendDataObject): the sun lamp that is providing the lighting

	
translation = None

	The object’s position relative to the camera represented by a single translation vector (in
Blender units). This value isn’t computed until setup time, and will be None beforehand. If you need this
translation vector as part of your metadata, make sure to call setup first before calling dumps.

	
class starfish.Sequence(frames)

	Represents a sequence of frames.

This class acts exactly like a list of starfish.Frame objects, with a few utility methods tacked on.

Most of the power of this class comes from the classmethod constructors, which can be used to create different
types of sequences in a more convenient, expressive way.

The bake method is useful for previewing sequences in Blender while they are being tweaked and configured, in order
to get an idea of what they will look like before rendering. However, it is not recommended to use bake at render
time. Instead, the sequence object can be iterated over frame-by-frame, like so:

for frame in sequence:
 frame.setup(...)
 bpy.ops.render.render(...)

	
__init__(frames)

	Initializes a sequence from a list of frames.

	
bake(scene, obj, camera, sun, num=None)

	Creates keyframes representing this sequence, so that it can be played as a preview animation. Keyframes will
be adjacent to each other, so no interpolation will be done. This is just a means to get an idea of what frames
are in the sequence. If len(frames) is greater than num, only every (len(frames) / num) frames will
be displayed.

This should not be called with large values of num (>5000), as it is quite slow and may crash Blender.

	Parameters

	
	scene – (BlendDataObject): the scene to set up the animation in

	obj – (BlendDataObject): the object that will be the subject of the picture

	camera – (BlendDataObject): the camera to take the picture with

	sun – (BlendDataObject): the sun lamp that is providing the lighting

	num – (int): The number of keyframes to generate. Defaults to min(100, len(frames))

	Returns

	A Sequence object.

	
classmethod exhaustive(**kwargs)

	Creates a sequence that includes every possible combination of the parameters given.

The arguments to this constructor are the same as those to the Frame constructor, except instead of
a single value, each argument may also be a list of values. For example, while position is normally an
iterable of length 3 representing a 3D vector, it could instead be a list of 3D vectors (i.e. an array of
shape (n, 3)).

This constructor then takes the lists of values for each parameter and generates frames out of their cartesian
product. For example, if 10 distances, 10 poses, and 10 offsets are provided, the generated sequence will be
10*10*10 = 10,000 frames long, including every possible combination of given distances, poses, and offsets.

	Returns

	A Sequence object.

	
classmethod interpolated(waypoints, counts)

	Creates a sequence interpolated from a list of waypoints.

	Parameters

	
	waypoints – (seq): A starfish.Sequence object (or just a list of starfish.Frame objects) representing the
waypoints to interpolate between. (tip: use the starfish.Sequence.standard constructor to create this.)

	counts – (int or seq): The number of frames to generate between each pair of waypoints. There will be
counts[i] frames in between waypoints[i] (inclusive) and waypoints[i+1] (exclusive). The total number of
frames in the sequence will be sum(counts) + 1. The length of counts should be 1 less than the length of
waypoints. (If count is an integer, then there should only be 2 waypoints.)

	Returns

	A Sequence object.

	
classmethod standard(**kwargs)

	Creates a sequence from parameters that are lists.

The arguments to this constructor are the same as those to the Frame constructor, except instead of
a single value, each argument may also be a list of values. For example, while position is normally an
iterable of length 3 representing a 3D vector, it could instead be a list of 3D vectors (i.e. an array of
shape (n, 3)).

This constructor then generates a list of frames where the parameters for each frame come from these lists,
zipped together.

Each list of parameters must be either the same length as all the others, or be list with a single value. If
a single value is provided for a parameter, then that value is broadcasted across all the frames, i.e. every
frame gets that value for that parameter. (The same thing happens if a parameter is omitted: every frame gets
the default value for that parameter).

For example: Sequence(distance=[100, 200, 300]) will generate a sequence of 3 frames where the distances are
100, 200, and 300, while all other parameters are the default.
Sequence(position=[(1, 1, 1)], distance=[100, 200, 300]) will generate a sequence of 3 frames where the
distances are 100, 200, and 300, while the positions are (1, 1, 1) and all other parameters are the default.

	Returns

	A Sequence object.

Utils

	
starfish.utils.cartesian(*arrays)

	Returns the cartesian product of multiple 1D arrays.
For example, cartesian([0], [1, 2], [3, 4, 5]) returns:

array([[0, 1, 3],
 [0, 1, 4],
 [0, 1, 5],
 [0, 2, 3],
 [0, 2, 4],
 [0, 2, 5]])

Works with arbitrary objects.

	
starfish.utils.jsonify(obj)

	Serializes an object’s attributes into a JSON string with support for mathutils objects.

All rotation objects are converted to a 4-element list representing wxyz quaternion form.
All vectors are converted to a 3-element list.

	
starfish.utils.random_rotations(n)

	Generates n rotations sampled uniformly from the group of all 3D rotations, SO(3).

	Parameters

	n – (int): number of rotations to generate

	Returns

	List of mathutils.Quaternion [https://docs.blender.org/api/2.82/mathutils.html#mathutils.Quaternion] objects.

	
starfish.utils.uniform_sphere(n, random=None)

	Generates n points on the surface of a sphere that are “evenly spaced” using the golden spiral method. Based on
https://stackoverflow.com/a/44164075.

	Parameters

	
	n – (int): number of points to generate over the surface of the sphere

	random – (int): if None, return all generated points. Otherwise, randomly sample this many points from the
generated ones (default: None)

	Returns

	A tuple of the form (theta, phi), where theta and phi are each numpy arrays of length n. theta is the
azimuthal angle, and phi is the polar angle.

Annotation

	
starfish.annotation.generate_keypoints(obj, num, stop=1, oversample=10, seed=0)

	Generates evenly spaced 3D keypoints on the surface of an object.

This function implements the Sample Elimination algorithm from
this paper [http://www.cemyuksel.com/research/sampleelimination/sampleelimination.pdf] to generate points on the
surface of the object that follow a Poisson Disk [https://en.wikipedia.org/wiki/Supersampling#Poisson_disc]
distribution. The Poisson Disk distribution guarantees that no two points are within a certain distance of each
other in 3D space, ensuring that the keypoints are more spread out.

The way Sample Elimination works is by first generating num * oversample points at random, and then eliminating
points in a certain order until there are num left. Thus, a higher value of oversample will give more
evenly spaced points.

This also has the nice property that every intermediary set of points also follows a Poisson Disk distribution.
By default, this function will keep running sample elimination until there is 1 point left, and then return the
points in reverse order of elimination so that the first n points are also evenly spaced out for any 1 <= n
<= num. The point at which Sample Elimination stops can be controlled with the stop parameter.

	Parameters

	
	obj – (BlendDataObject): Blender object to operate on

	num – (int): number of points to generate

	stop – (int): an integer between 1 and num (inclusive) at which sample elimination will stop, default 1

	oversample – (float): amount of oversampling to do (see above), default 10

	seed – (int): seed for the initial random point generation

	Returns

	A list of length num containing 3-tuples representing the coordinates of the keypoints in object space.
The first n elements of the list will also be evenly spaced out for any stop <= n <= num.

	
starfish.annotation.project_keypoints_onto_image(keypoints, scene, obj, camera)

	Converts 3D keypoints of an object into their corresponding 2D coordinates on the image.

This function takes a list of keypoints represented as 3D coordinates in object space, and then projects them
onto the camera to get their corresponding 2D coordinates on the image. It uses the current location and
orientation of the input Blender objects. Typical usage would be to call this function after
Frame.setup and then store the 2D locations as metadata for that frame:

frame.setup(scene, obj, camera, sun)
frame.keypoints = project_keypoints_onto_image(keypoints, scene, obj, camera)
with open('meta...', 'w') as f:
 f.write(frame.dumps())

	Parameters

	
	keypoints – a list of 3D coordinates corresponding to the locations of the keypoints in the object space, e.g.
the output of generate_keypoints

	scene – (BlendDataObject): the scene to use for aspect ratio calculations. Note that this should be the
scene that you intend to perform the final render in, not necessarily the one that your objects exist in. If
you render in a scene that has an output resolution with a different aspect ratio than the output
resolution of this scene, then the results may be incorrect.

	obj – (BlendDataObject): the object to use

	camera – (BlendDataObject): the camera to use

	Returns

	a list of (y, x) coordinates in the same order as keypoints where (0, 0) is the top left corner of
the image and (1, 1) is the bottom right

	
starfish.annotation.normalize_mask_colors(mask, colors, color_variation_cutoff=6)

	Normalizes the colors of a mask image.

Blender has a bug where the colors in a mask image vary slightly (e.g. instead of the background
being solid rgb(0, 0, 0) black, it will actually be a random mix of rgb(0, 0, 1), rgb(1, 1, 0), etc…).
This function takes a mask as well as a map of what the colors are supposed to be, then eliminates
this variation.

This function accepts either the path to the mask (str) or the mask itself represented as a numpy array. If a path
is provided, then the function will return the normalized mask as well as overwrite the original mask on disk.
If a numpy array is provided, then the function will just return the normalized mask.

	Parameters

	
	mask – path to mask image (str) or numpy array of mask image (RGB)

	colors – a list of what the label colors are supposed to be, each in [R, G, B] format

	color_variation_cutoff – colors will be allowed to differ from a color in the label map by a
cityblock distance of no more than this value. The default value is 6, or equivalently 2 in each
RGB channel. I chose this value because, in my experience with Blender 2.8,
the color variation is no more than 1 in each channel, a number I then doubled to be safe.

	Returns

	the normalized mask as a numpy array

	
starfish.annotation.get_bounding_boxes_from_mask(mask, label_map)

	Gets bounding boxes from instance masks.

	Parameters

	
	mask – path to mask image (str) or numpy array of mask image (RGB)

	label_map – dictionary mapping classes (str) to their corresponding color(s). Each class can correspond to a
single color (e.g. {"cygnus": (0, 0, 206)}) or multiple colors (e.g.
{"cygnus": [(0, 0, 206), (206, 0, 0)]})

	Returns

	a dictionary mapping classes (str) to their corresponding
bboxes (a dictionary with the keys ‘xmin’, ‘xmax’, ‘ymin’, ‘ymax’). If a class does not appear in the image,
then it will not appear in the keys of the returned dictionary.

	
starfish.annotation.get_centroids_from_mask(mask, label_map)

	Gets centroids from instance masks.

	Parameters

	
	mask – path to mask image (str) or numpy array of mask image (RGB)

	label_map – dictionary mapping classes (str) to their corresponding color(s). Each class can correspond to a
single color (e.g. {"cygnus": (0, 0, 206)}) or multiple colors (e.g.
{"cygnus": [(0, 0, 206), (206, 0, 0)]})

	Returns

	a dictionary mapping classes (str) to their corresponding
centroids (y, x). If a class does not appear in the image,
then it will not appear in the keys of the returned dictionary.

Rotations

This module is for alternative 3D rotation formalisms besides the Quaternion, Matrix, and Euler representations provided
by the mathutils [https://docs.blender.org/api/2.82/mathutils.html#module-mathutils] library. They must implement the to_quaternion method, which returns a mathutils.Quaternion [https://docs.blender.org/api/2.82/mathutils.html#mathutils.Quaternion]
instance, in order to be compatible with the rest of this library. A from_other classmethod may also be useful,
in order to convert from a mathutils representation to the alternative representation.

	
class starfish.rotations.Spherical(theta, phi, roll)

	An alternative 3-value representation of a rotation based on spherical coordinates.

Imagine a unit sphere centered about an object. Two spherical coordinates (an azimuthal angle, henceforth theta, and
a polar angle, henceforth phi) define a point on the surface of the sphere, and a corresponding unit vector from the
center of the sphere (the object) to the point on the surface of the sphere.

First, the +Z axis of the object is rotated to this unit vector, while the XY plane of the object is aligned such
that the +X axis points in the +phi direction and the +Y axis points in the +theta direction. It may be helpful to
visualize this rotation as such: imagine that the +Z axis of the object is a metal rod attached rigidly to the
object, extending out through the surface of the sphere. Now grab the rod and use it to rotate the object such that
the rod is passing through the point on the sphere defined by theta and phi. Finally, twist the rod such that the
original “right” direction of the object (its +X axis) is pointing towards the south pole of the sphere, along the
longitude line defined by theta. Correspondingly, this should mean that the original “up” direction of the object
(its +Y axis) is pointing eastward along the latitude line defined by phi.

Next, perform a right-hand rotation of the object about the same unit vector by a third angle (henceforth called the
roll angle). In the previous analogy, this is equivalent to then twisting the metal rod counter-clockwise by the
roll angle. This configuration is the final result of the rotation.

Note: the particular alignment of the XY plane (+X is +phi and +Y is +theta) was chosen so that “zero rotation”
(aka the identity quaternion, or (0, 0, 0) Euler angles) corresponds to (theta, phi, roll) = (0, 0, 0).

Also note that this representation only uses 3 values, and thus it has singularities at the poles where theta and
the roll angle are redundant (only their sum matters).

Attributes:

	theta: The azimuthal angle, in radians

	phi: The polar angle, in radians (0 at the north pole, pi at the south pole)

	roll: The roll angle, in radians

	
classmethod from_other(obj)

	Constructs a Spherical object from a Quaternion, Euler, or Matrix rotation object from the mathutils library.

	
to_quaternion()

	Returns a mathutils.Quaternion [https://docs.blender.org/api/2.82/mathutils.html#mathutils.Quaternion] representation of the rotation.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 starfish	

 	
 	
 starfish.annotation	

 	
 	
 starfish.rotations	

 	
 	
 starfish.utils	

Index

 _
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | M
 | N
 | P
 | R
 | S
 | T
 | U

_

 	
 	__init__() (starfish.Frame method)

 	(starfish.Sequence method)

B

 	
 	bake() (starfish.Sequence method)

C

 	
 	cartesian() (in module starfish.utils)

D

 	
 	dumps() (starfish.Frame method)

E

 	
 	exhaustive() (starfish.Sequence class method)

F

 	
 	Frame (class in starfish)

 	
 	from_other() (starfish.rotations.Spherical class method)

G

 	
 	generate_keypoints() (in module starfish.annotation)

 	
 	get_bounding_boxes_from_mask() (in module starfish.annotation)

 	get_centroids_from_mask() (in module starfish.annotation)

I

 	
 	interpolated() (starfish.Sequence class method)

J

 	
 	jsonify() (in module starfish.utils)

M

 	
 	
 module

 	starfish.annotation

 	starfish.rotations

 	starfish.utils

N

 	
 	normalize_mask_colors() (in module starfish.annotation)

P

 	
 	project_keypoints_onto_image() (in module starfish.annotation)

R

 	
 	random_rotations() (in module starfish.utils)

S

 	
 	Sequence (class in starfish)

 	setup() (starfish.Frame method)

 	Spherical (class in starfish.rotations)

 	standard() (starfish.Sequence class method)

 	
 starfish.annotation

 	module

 	
 	
 starfish.rotations

 	module

 	
 starfish.utils

 	module

T

 	
 	to_quaternion() (starfish.rotations.Spherical method)

 	
 	translation (starfish.Frame attribute)

U

 	
 	uniform_sphere() (in module starfish.utils)

 nav.xhtml

 Table of Contents

 		
 Documentation for Starfish

_static/plus.png

_static/file.png

_static/minus.png

